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EDITORIAL NOTE

The attached report by Dr. Barrar attempts to give a com-

plete summary of existence and ux!c,•encss theorems for the

Navier-Stokee equ.at!ots for incortpresirle fluids and reidttd

equatlonso This paralleis Dorotlny L Bernstein's useful

surn.ary of existernce and unliueness theorems for elliptici

hyperbolic, and par!tbolic equations in her book Existehct

TheernL in Par'iar Differential Equations. Only abolt ten

per cent of the papers covered heroin are listed in Miss

Bernstein's summary.

As only about one-tenth of the references are liked

in Miss Bernstein's suamaryj and as no other comparablb compil-

ation seems available, I hope Dr, Barrar's report will prove

useful,

At the dame time, as it has not been carefully edited

or checked independently, persons doing original research on

existence and uniqueness theorems are advised to consult

original sources,

Garrett Birkhoff



I. NAVIER-STOKES ,QUAA IONS

A. Time Dependent

The time dependent Navier-Stokes equations for an incompres-

sible viscous fluid are1 $j20':

(a) ui(xt) •u(xt) 2( x aa t ._ ! _ _ k ( ,,t ) __ ---- (1P t)

ax aX

(ib) -

In these equations, u,(X, t) is the vector velocityR

p(x, t) the pressure; g(x, t) the gravitational force per unit

mass; and the constants o and J * the density and kinematic

viscosity respectively. The usual boundary conditions are u = 0

on any fixed rigid surfacell5, and in an infinite region u(x, t)

-- at infinity.

In the special case when g(x, t) is the gradient of a

potential G (e.g., when it is the vector acceleration of gravity)

by setting

(2) P -

the homogeneous equation

1For a derivation and related references, see (25, Vol. 1, p. 96].
Here and below, x = (X1 , x 2 , x.) will denote vector position,

and = (Ul, u2 , u3 ), vector velocity.
X = (xI ... Xn)

3 Repeated indices imply summation.
4 See [25, Vol 2, p, 676).
9 Onlv the fixed boundary problem will be discussed in this paper.
For a discussion of the free boundary problem, see Lewy [42]. Alst
only Uhie incompressible case will be treated, as no existence c'.
uixiiqueness theorems are known for the Navier-Stokes equations for
c-ompre:sib.e fluids, with nun-zero viscosity.



U (--- • u . .( =t)2
(3a) U t I 22

)ui (x1 t)

(3b) =( )
"t) xi

4* obtained,

Be Two-Dimensional Case

In the two-dimensional case [i.e., x = (xIx 2 )) if f =

curl--, only t 3 does not vanish. Hence, by taking the

curl of equation (3a) yields, in this case,

(4). Z--.(x,t) + ul(xt) !Le- (x,t) - Y/7 2  (x,t), [i = 1,2]

whereby the pressure potential P is eliminated.

Also in the two-dimensional case, equation (3b) permits the

6introduction of a locally single-valued stream function -y(x,t)

such that

(5) U1  , U2 . -

The use of ', eliminates the necessity for (3b).

Then
7

(6) . 2

and hence equation (4) may be written8

"d S7_2-,__ (xta _ . % ... (2 ,t)
tx :1C Y y ~x

=IyV *(x, t)

6See 152, Chap. 12, §2, equation (1)].
'See [52, Chap. 12, §2, equation (2)].

8 See (52, Chap. 12, § 2 , equation (2)]'.



Similar simplifications are possible in the axially symmetric

case, but we shall not describe them.

C. Steady Flow

A motion is called steady (permanent, stationary) if all the

partial derivatives with respect to time vanish. In steady motins,

the Navier-Stokes equations (la)-(lb) reduce to

(a u(x k(X) +px (x) [i = 1 ... n]

Sui(x)

(8b) - 0
7x i

The usual boundary conditions are that u is given (usua!ly

zero) as U (x, t) on a rigid surface S, and, in the ca.se ?- an
-4 -

iTufirite region, u approaches a given u at infinity.

For steady flows, equation (7) reduces to

(9) V'/,z4(x) = __.__ -_ v1*(x)- •* --I _.ý*(x)
9x 9  Ox1 ? xI dx 2

It might be conjectured that, as t -- > o, the solution of

any time dependent problem approaches the corresponding stationary

solution. Experimental evidence supports this conjecture for

equations (3) and (8) if R is sufficiently small9, but notIO

for large R.

ti is the r1eynolds number, defined as the dimensionless ratio

S= ½-- , where v is a typical velocity and L, a representz-

t i.ve linear dimension,

-:oce [5, Pa 23]3
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II, PROBLEMS

A, Existence and Uniquenessi Time-De endent Case

The mathematical problems concerned with the time dependent

Navier-Stokes equation (1) are of the initial value type usually

associated with parabolic differential equations * if Q is a

reginr, in En( .. xn) space, the problem here is to find a

sol!xon u,(x, t) of equation (1) in 0 and for 0 t c

S'Ieh tb:.t ui(x, O U(x) in Q; and ui(x, t)u (x, t),

whore U (x) is given in Q, and u (x) is given on S, -%hen

x e S, where S is the boundary of Q, Such a problem will be

denoted by Pt (Q)

Various tochnlcii difficulties arise depending on whet.,er

Q is botinded or not, and on the smoothness of the boundary S

of Q, ,7hen Q is unbounded, a condition such as uniformity

at infinity,

(a) Urn U(Yx, t) - t (t)
lx I

or finiteness of total energy,

( 1G) JUj(x.t) u1(x~t)dx ! constant

Q12. nmust also be included to insure uniqueness . When Q © n the

initial values aid 'c)r..Uition (a) or ( ) are all that are given,

To r.tain existe.-,--! . uniqueness theor-3mu, S a the boun&;y

vs,, ii- ,st be dr-, d more explicitly than at.z:vP'. This wil'.

b - -_ .: n the -.. .'t of the theorems.

specAi:,l .Js •f Boussines.1 flow [36, §334a], i.e., V
O, U = Uz,'zt). ':'he Navier-Stokes equatioi (3) actually re-

" -.'es to the hee.t '.1..

_U (z,t) = V•-U•z-t)

Hence it seems pl.--'w 1- that the -voble,•; thu time dt;pc"'
Na Stoke B ra r i
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B. Case of Steady Flows

The mathematical problems concerned with the steady state

Nav"er-St+kcs equation (8) are boundary value problems usually as--

societed with differential equations of elliptic type l(though see

(34) below). If Q and S arc as above, the problem is to find a

solution of equation (8) in Q, that takes on preassigned values

on S. This will be called problem P(Q).

C, Regularity of Solutions

For Laplace's equation V2 U = 0 in n-dimensions, a solution
12*

U in a region Q is analytic in the interior of Q. Moreover,

if a portion T of the boundary is a manifold of class C anC the

boundary value • assumed by U on T is of class Cn, then in
any Q-neiuhborhood of T- U is no class Cn-l. 15 For the . t-•Ly

state problems discussed in this paper, analogous theorems have been

proved in some cases and are probably true in all cases. Those that

have been proved will be listed later in this paper.

For the heat equation 12U(x; t) - ? U(x, t)/a t = O in n

dimensions, a solution In a region Q for t0 - t - tI is analytic

in the space variables and of class CO in t for x in the in-

terior of Q and to 0 t - t1 . Moroever, if the initial values

are of clasa Cn in Q1C Q, then the so]lition U is of class

7r irrfltational stendy flow in the snprnjn ran nf YP-rn ujm-cnc-,

LhW equation for the stream function actually reduces to Laolace's
equation V2* = 0. (This will be discussed further on p, 16.) T-t•
±t Scnz: plausIble tbat ,:ho problems for the steady state Navier-S-.-.s
equation are of the boundary value type.
14 See '33, p. 220].
1 5 See [341.

S~e {26, p'. ?901.



n/2 < 17C in x and of class C in t for x Qc, to t -to

For the time-dependent problems discussed in this paper analogous the-

orems have been proved in some cases and are probably true i, all

cases. Those that have been proved will be listed later in this paper.

D. Some Unexpected Results

To illustrate some of the pitfalls that must be avoided in deal-

ing with these problems, the following simple examples are given:

1. To obtain uniqueness in unbounded regions, the solution must

remain bounded. The following example 18 shows this:

F(x, t) -7 exp (-x 2 /4t)

is a non-vanishing solution of19:
•2U U U

dx

for t > 0 and

'il) rlin H(x, t) = 0, for all x.

t -- >0

Hence, this function could be added on tc any solution of the linear

equation (10) to spoil uniqueness properties2 0 .

2. Physical intuition sometimes fails in mathematical problems.

Consider the equation for the temperature in a one-dimensional in-

finite rod with variable heat conductivity

(12) au (x, t) =a(x, t) (X, t) + b(x, t) -- (x, t)
i•t czx- x

4- c(x, t) U(x, t) + b(x, t)

a > 0.

- 'ee 13 1.

18See r91.
19See footnote 11, p. 4 for th(c rclevance of this equation.
20Note that xliýo H(x~t) is not defined. Thbi is discussed more ccom-.
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Physically, it is plausible that if the temperat-are is given through-

out for t = t, the temperature is determined throughout for t >

to) This, however, is not necessarily true.

For equation (12) to have at most one bounded solution in the

half-plane t > 0 approaching a given cnntinuous function for t = 0,
(X -/'2 +

some condition such as that_ a(y, t)oy must diverge for -

must be imposed. The following example shows this.

For the self-adjoint equation

(13) a u(x, t) + ch 2 x (ch 2 x )X 0
Ot

if 41 (x) is the Gauss normal function

X 2
j _V 2 /,12

{(x) e. J .& 2 dy

then for each t To

(14) u(t, x) = - 1 + • (1 - th x_) _ !(- I + th x)
V77T -. 1 VT _T • t7

is a bounded solution of (13) that (because Ith xl ! 1 and

(Co) = 1) converges to zero for all x as t -- > T-.

3. The two-dimensional steady state Navier-Stokes equation (9)-4

for the problem U = (O, O) on y = O, t (0, 0) on y = I. has
-4

the unique solution U = 0. However, with the same boundary conditlaw

the incompressible ideal fluid equations have an infinite number of

so"nt.!onrs. (Any stream function *(y) of class C2 such that

*1(O) = *1(1) = 0 and *"(y) = F(*(y)) for arbitrary F will be

a solution
2 2

21See [21, p. 125].
22See B52, Chap. 11, §i, No. 2].



I I I. CATALOG OF TW•OREMS

A Navier-Stokes Equations

Leray [37] proved the existence, but not the uniqueness of sol-

utions to problems P(Q2 ), P(o5 ), P(E 2 - Q2 ), and P(EO - for

Navier-Stokes equation (8).23 He remarked that his method does not

general±.s to p(Qn) and P(En _ Q,). 24 More specifically, his

results in E3 are

Theorem 1. Let 03 be a bounded region in E3  of _tass

B - h. Let a be of class C on S with

J a n dS -0
S

Then there exists a regular solution uI of problem P(Q3 ) for

equation (8) with ui = ai on S.

Theorem 2: Let and a be defined as in Theorem 1. Let

a be a vector define-d in E of divergence zero. Then there

exists a regular solution u1 of the homogeneous equation (8) with

u = ai on S and lirn u = ai. Moreover,
1x1---W

_( U 2a,) )dxl dx, dx
,. -Q -2Xk ?X xk dxk k

is bounded.

To prove theorems 1 and 2, Leray used an early form of the

Leray-Schauder theorem 26 Similar results hold in E2

In the time dependent case for the Pt(E ) problem, Leray

[37) proved

I3 will denote a bounded set in En.

?)'iT vicaily, this is because o ( dV does not exist for n > 3,

"-. .i neighborhood of every pointrp e S be represented parameti'iclly
=•; ' (uDv), i=1,2,-3, with allD x being h-Lipschitz contAnuou'>

.. Dx u(lvl)-Dx(u~v2)1 - [1ul-u 2 Th + vl-v 2 1h] and the

J:c.:Aian a(x x x )/iD(uv) being of rank two. Then Q is called
a. :'•_±n of cl~s.••A-h, If Q is a region of class A-h, and a3l
T•.. exist and are h-'"ipschitz continuous, then Q is said Io be of
0£-,I;S B - :_h Thli .. _ t+h nntat.tnn used in [( 4.

26 For a st.temcnt and proof of the theorem, see [411.



Theorem 3: Let ui(x 1 x 2 ) and •ui(xlx 2 )/o x, be bounded,

continuous, and belong to L 2(E2). Let 27u(x 1, x 2 )/. xi 0.

Then there exists a unique solution u (xlx2 t) of problem Pt(E2

for equation (3) for all time, with ui(xlx 2 o) a i(xlx 2 ) and

such that ui(xlx2 t) and au (Xx t)/lxj belong to L 2(E )

and are Zrunded.

The method of proof is that of successive approximations.

Starting with an existence theorem for the Stokes equation (50),

Leray constructed the sequence

)U n(x t)
(15a) C U (xt) + - (x,t) + gin(x,t) [1 1,2]

0t Oxi

(15b) u(x,t)
6JX1  n-In-0 xui _x, t)

with g l = uk (x,t) )U (x t)

Sxk

He then showed uin approached the desired solution.

For the Pt(E3) problem, Leray [39] was not able to prove the

analogue of Theorem 3 for all time, but only for a neighborhood of

t = 0. Similarly for the P t(Q2) problem, when Q2 is convex

and of class B - h, Leray [38] was able to prove only a local

existence theorem in time, even for ui = 0 on S for t - C.

Dolidze [10, 14] obtained local existence theorems for Pt(Q2 ),

Pt(Q3)' Pt(E 2  ) and Pt(E -Q); and Cseen [56, P. 72] pre.

ceded Leray in obtaining a local existence theorem for problem

Pt(E5 ).

Actually, Leray [38, 39] went further than merely proving

local existence tAeorems by successive approximations. On the onq

hand, he gave criteria under which his local solutions could be eT-

i.e., J& ui(xlx2 )ui(xlx2 )dx 1 dx 2 < 00
P,
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tended for all time. When, for example [63] in problem Pt(E3) the

given initial conditione u,(x, 0) have an axis of symmetry and whe

lim inf q ý\5ui(x• 0) ui(x, 0) dV = 0

q0. q

ý-r1ere q is the dista.nce from any point x to the axis of syrhnetry,

it follows from Le.r',1. rIs, ut that the Npvier-Stokes epn-aaint.1

cLo have a unique solition for all time,

On the other hand, although Leray did not derive the existc:ice

of a -egular solution for all time for the problem Pt(E0), he d4-d

derive the existence (but not the uniqueness) of an irregular so'u-

tion 28, which will now be defined.

Definition: ui(x, t) is an irregular solution of equation (3

when it satisfies the following three conditions:

A) 0 does not differ from the time axis by more than a set

of measure zero; where 0 is described as follows. Define an

interval of regularity QeTe on the time axis, one in the interior

of which the vector ui(x, t) is a regular solution of equation

(3), and one for which this statement cannot be made for any

interval containing GeTe , 0 is the union of these disjoint

intervals.

B) The function ui(x, t)u 1 (x, t)dxldx 2 dx3 is decreas-

ing on 0 and the initial time t = 0,

C) When t -- > t', then ui(x, t') -- > ui(x, t) we~kly in

L norm,

Leray (38) obtained similar results for the P t(Q2) problem in

a convex region,

28Leray called them turbulent solutions. Duhem [18, 1st Ser. PXAt r

Chap. 3, Sn9] speaks of irregx!ar solutions. Oseer. [56, p, 721 i-
also concerned with them,
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Leray (39) conjectured that some problems may have irregular

but not reguular -onLtions. He suggested that if one could find a

function -i(x) beoonging to L 2 (E 3 ) and satisfying

(16a) )vV -V [v + xk - r] P= V [a - 0)
1 k xk a x i. k a xk

(16b) - 0

SXkthen the initial values

(17) ui(x, 0) = Vi(2aT'1/2x)

Y 2_aT

would have no corresponding regular solution for all time, but

would have the irregular solution

vi[2a(T - t)-I/2x]
(i8a) ,T for t e [0, T)

(18b) Ui = 01 for t - T.

However, as yet no one has constructed the desired vector

vi(X).

Hopf (30] dcveloped a method for establishing "weak" solutions

of equations (3). Although he obtained his results much more

simply than Leray, and they apply to any region and any dimension,

itis rea-1-a'ty•esults for ".J6%." &3(=o• M tIM5t M -tualn as

Leray's for irregular solutions, Hopf's definition of a weak solu-

tion is given below.

Definition: Let G be any open set in En+l (xi sop xW t)

-1 2space. Let N be the class of vectors a of class C ' with coM-

pact support in G. If some vector u belongs to L'(G) and

satisfies



~aj _ dx t + ~12.
(A) u dx dt + au u dx dt + uIdx;..t

t 
G 0

for ii . a belonging to N, with div 0,

(B) ui dx dt o ,
G Oxi

for all h belonging to N,

then -, is called a weak solution of (3).

Hopf showed that a weak solution of (3) in G which belonged

to C2 (G) is actually a regular solution.

In connection with (A) and (B) above, it is interesting to

note that Weyl [74] showed that if U belonged to L2 (G) and

•U'•h dV = 0 for all h belonging to N, then u = u* a.e,.

where u* is a regular solution of Laplacets equation. In other

words, he showed that C. v.--.k solution in this case is actually a

regular solution. However, the corresponding result has not been

proved for equation (3), whose non-linearity makes this a difficult

problem.

P.nother approach to Pt(E ) for equation (3) is that taken by

Kampe de Feriet in [32]. He showed that tile Fourier transform

(19) Z(WW2t =(x,y,t) exp[-i(wlX+W2y)]dx dy
(19 z~~ 2,t) 2 1 E

of the vorticity 4(x,y,t) associated with the two-dimensional

flow of an incompreEsible fluid extending over thte utli~e (X,y)-

plane, with finite kinetic energy and 09 L, transforms equation

(4) into 29

(20) --• z(w 1 ,w 2 ,t) -2}(w 1
2 + w2

2 )Z(wlW2 t) +

f O~w2 - 00 w1212, 2 2 )"(Gi@2t)i(@ I+W 1 i2+w,- tll(" _1dV-1 2+

2 9 AssumLng there is a solution to equation (20) leads to the problem
of dqtermining a vector v ina given region Q, when curl v and
dlv 0 are given in Q, and v is given on S. A proofC l,-f

nipuniqueness can be found in [52, P.4r7] and a proof of existence in
;,~~~I ...t• 6-P.01.
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Bellman [4). starting with equation (2C) and the initial con-

dition z(WIw2 ,O) - O(wlw2 ), derived by successive approximations

Theorem 4: If max 10(WW,)l is sufficiently small, there is

a solution of (20) which is unique Z(Wlw 2 0) = 0(wlw2 ) and satis-

fies the inequiality
3 0

< 8 max Id(w w2)i

Iz(w w t)I 1 2+'

B. Incompressible, Non-Viscous Fluids31

In the case when R = wa equation (1) reduces to the equations

of motion of an ideal incompressible fluid 3 2

Suj(Xit) -gui(x~t) Op(x, t)
(21a) _ + u k(x~t) = O + gikxpt) [i=1..n]

at Ukxk •xi

(21b) ...... t o0
2) xi

The usual boundary conditions are u n - 0, instead pf u - 0,

on any fixed rigid surface.

In this case, equation (4) reduces to

(22) (x~t + u~x~t z •(x't)

(22) + (xt) 0 [i = 1,2] ,

dt xi

which means that • is constant along the path of every particle33

When R =, equation (8) reduces to
,4u,(X) -3,(x)

(23a) ul,(x) + gi(x) [i 1 ... n)
•xk x xi

(23b"_
•XX

1.

3OAlthough this is no improvement over Lerayrs result, the approac4
ts interesting.

3 1 For ideal flow for compressible fluids, see [50, 69, and 8).
32See [52, Chap. !O, ft, No. 61.
3?ibido,9 NO. I].
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f) The divergence is zero

g) The normal component of the velocity at the boundary is zero
with

h) The paths of the moving point dx/dt = u, dy/dt- v,/ x a,

y = b, at t - O, exist; and at each instant there is a one to one,

continuous area preserving relation between (a, b) and (x, y),

(a, b) e• l, (x, y) E R

i) The vortex density is constant along the moving point, and

in each finite time interval satisfies a uniform Lipschitz condition

",:.iih respect to x, y, and t.

Lichtenstein [461 earlier proved the following local type of

.*.•stence theorem for the plane.

Theorem 6: Let a solution of problem Pt(E ) of the ideal Izn-

r.c-.ipressible fluid equations exist for to - t - t1 with initial

v.,iues Uo0 (x). Then if the initial values U0 (x) are changed

,-".'ih't'.?35 to Uo(x), a unique solution to problem Pt( 2 ) will2

c.':1st for the Initial conditions Uo(x) for to - t - tip

Although this theorem does not constitute an improvement over

the theorems of Wolbiner, Schaeffer and HIlder, Maruhn (49] extended

It to axially symmetric initial conditions in E3 which is not cov-

ered by their two-dimensional theorems,

In the steady state case, restricted to irrotational motion,

the problem is reduced to the Neumann problem in potential theory36.

ThL, e ezxistence and uniqueness theorems for this prob[lem can be found

in Kellogg [33] and Gunther ([273.

35u W- u°(x)I • I<:Di U(x) - Di '(x)l < E fi = i,2]

36See [52, Chap., 11, 93, p. 44o].
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f) The divergence is zero

T) The normal component of the velocity at the boundary is zero
with

h) The paths of the moving point dx/dt = u, dYi/dt - v,// x -a,

y = b, it t = 0, exist' and at each instant there is a one to one,

continuous area preserving relation between (a, b) and (x, yIP

(a, b) e A, (x, y) e R

i) The vortex density is constant along the moving point, and

in each finite time interval satisfies a uniform Lipschitz condition

w~ih respect to x, y, and t.

Lichtenstein f46] earlier proved the following local type of

-ý.-istence theorem for the plane.

Theorem 6: Let a solution of problem Pt(E 2 ) of the ideal in-

c,'-pressible fluid equations exist for t - t - tI with initial

viues Uo0 (x). Then if the initial values U%(x) are changed

t11ghty35 to U (x), a unique solution to problem Pt(E 2 ) will

erist for the initial conditions Uo(x) for tJ - t - tl

AlthoUgh this theoridm does not constitUte M improvement over

the theorems of Wolbiner, Schaeffer and H8lder, Maruhn [49] extended

it to axially symmetric initial conditions in E3 which is not cov-

ered by their two-dimensional theorems.

In the steady state case, restricted to irrotational motion,

the problem is reduced to the Neumann problem in potential theory36.

The existence and uniqueness theorems for this problem can be found

in Kellogg [33] and Gunther [27].

35 7ij() uO(x)i < e Di UO(x) - Di UT(x)I e [i = i,2]

36See [52, Chap. U1, §3, p. 4401.
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C. Burgerst One-Dimensional Analogue

To gain better insight into the Navier-Stokes equations,

Burgers [6 and 7) and Hopf [29] have studied the cue-aimensional

analogue

a U(xljt) '3 u(xl,t) Q(xlst)
(24) + u(x 1 , t) 2 9V t a x x1

This is evidently a non-linear paraboiic equatiio.

Hopf [29] observed that the transformation

(25) 0 ="exp - - u dx

or

(26) u - - 2 x/

takes a solution of Burgers' equation (24) into the heat equation

(27) Ot = Oxx

and vice versa. (See also J. D. Cole, Quart. Appl, Math. 9 (1951)

225-236.)

Thus by using known tteorems for (27). Popf established

Theorem 7: Suppose that u (x) is integrable in every

finite x-interval and that

(28) r u0u()dE = o(x), for jxj large
0

The•n

1
( exp - - F(x, y, t) dy

exp -A F(x, y, t) dy.

where

(30) F(x, y, t) x-- Y) + u (() d7)

0

is a re~ular solution of (241) in the half.-Plane t > 0 that
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satisfies the initial conditions

(Xa

(31) 'o u("., t) dý -- o U (•) dV,, as i -- > 0
0 ,0 0- C

for every a. if, in addition, uo(x) is continuous for x = a,

then

(32) u(x, t) -- > u 0 (a), as x -- > a, t -- > 0.

A solution of (24) which is regular in some strip C < t < T

and satisfies (31) for each value of the number a, necessarily

coincides with (29) in the strir.

The Case R _--> c . If ui(x, t, v/) is a solution of the

Navier-Stokes equation (3) for a given il in a given region Q,

taking prescribed values on S, the boundary of Q, a problem is

to find what limit (if any) ui(x, tki ) approaches as R -- > o.

From results obtained for equation (24), Hopf [29, p. 201]

conjectured that in the interior of Q as R -- > oo, ul(X, t, /)

approaches a "generalized" solution of the ideal incompressible

equations (21).3.7,38 The approach, however, cannot be uniform at

the boundary because a viscous fluid adheres to the wall, and an

ideal fluid slides along it 3 9 ,

D. The Boundary Layer Equation

To study the behavior of afluid in the neighborhood of the

boundary as R -- > •, Prandtl [62] derived the boundary layer

equation40' 41

37 This "generalized" solution is a weak solution of (21) in the
sense given on p. 11 of this report,

38Wasow [71] treats the case lira 2u(x,y) + N = u f(x,y).

Oseen [56, Part 3] also treats the linear case,
39See [73, P. 383].

x = ., y = 151l where

Fnr physical background, see [25, Vol. 1. Chap. 2] and [1.71.
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(33) -2 .

779 P 7 7 77 T7 7, af tfl;'t

when R is the straight-line boundary of' the two-dimi.nsional

region Q, and f(e.) is given.

The boundary layer equation in the steady state case may be

conveniently given in a form due to von Mises [51]. Setting

-2 . -" P
Z = - as the dependent variable, and W and • as

independent variables, von Misees reduced (33) to the non-linear

parabolic equation

() --. Vk2 -- z 0 + h z)-.

This form is very convenient for theoretical discussioni

For the von Mises equation (34), Piscounov [61) proved

Theorem 8: Lei z(O,) ) (,l)) z(ý, C)= k(ý) and

z(ý, o) = 0. Moreover, let

a), (O) k,(O), 0(w),- 0

b) k(O) - 0(',) for > > o

c) €(,) - k(O) - c ol some l >- 0, with V<c

d) k(e) be, continuous and non-decreasing42.

Then under, these boundary conditions, the equation

(') z = ((), - 1/2

has a solution. M4oreover, let

e) 0"(') - for some c2 > 0 with V -2"

Then the solution is uilque.

When the boundary is an angle of 1T, Falkner and Skan (19]

k 2 This means a favorable pressure gradient, i.e., the flow is

accelierating.
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reduced the boundary layer equation to an ordinary differential

equation. Weyl [73] gave an existence but not a uniqueness theorem

for the differential equation. Using conformal coordinates (ý, 7ý)
with ds 2  dx 1

2 + dx22 (dE2 + d7?2 e(P, n), he obtained the

more general form

(35) h(ý)[k 2 (•) _ (S)2] + 2* a a

077 ;~77 77 -77 a

where a) 77 = 0 Is the boundary, b) h(ý) = , d log e(ý, ()/dý,

c) */ a 77 = ul(•, fl) -- > k(e) for ) -- > c.

E, General Theory of Non-Linear Parabolic Equations.

The only results for non-linear parabolic equations apply to

non-singular equations for bounded regions. Although these rosyJts

cannot be directly applied to the von Mises equation, It is COLre

ceivable that through some suitable limiting process they can.

Gevrey [23, •§28-29], through successive approximations, ob-

tained what are probably the best results for non-linear parabolic

•.n+--t-os. To indicate the scope of his results, they are given

below in a simplified form. By coordinate transformations and

extension of boundary values to all of (x,t)-space, the theorems

can be applied under more general conditions than given here..

Let T= jx, YIj x [0, 1], y e[I, 113

Theorem 9: Let f(x, y, z, p) be such that

(36) If(xylzplP1 ) - f(x 2 y2 z2 P2)1 - K[fx 1 -x 2 I, +1yl-y 2.1'

+ Iz1 + z21 + ItP1 - P 2 1]

for (x, y) c T, Izj, IpI < N, Then thcre exists a unique solu-

tion to the problem 4

• p= az/ax, q = z/iy.
)44AlbcrB [1) generalized this to n dimonsions.
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S2 z ai X = 0
(37) f(x,y,z,p) in T with z = 0 on x = .
ax" CY (y -

Theorem 10: Lot g(x, y, z, D, q) be such that agV,

g/-z, ag/3 P, Ogg/q exiEt and satisfy a condition similar

to (36) with the addition of a term in 1q1 - q21. Let <1/aq

> 0. Then there exists a unique solution tc the differential

equation

e3 z d-Yz X
(38) = g(x,y,z,p,q) in T, with z = 0 on x= 1 .

02 X Y = V

Another approach to the existence theorems for the von Pises

and other non-linear parabolic equations is through difference

equations. Luckert [48] assumed equation (35') had a solution,

and showed how to obtain it by difforence equations. John [31],

among others, proved the convergence of solutions of difference

equations to solutions of parabolic equations in many cases45.

F. Oseen Equation.

In a given unbounded region Q, equation (1) simplifies to

the linear Oseen equation46 by replacing the term u -uiby

a uh ) a Xt
the approximation Uk a , where uk = lim uk(xt). This

gives an asymptotic approximation for equation (1) at large dis-

tances. By rotating the xI axis parallel to the Uk vector, the

Oseen equation reduces to
-u (x.t au (xt) )t

(39) +u u )vu4(x3t) -p Jt + g1,t)

t X i

[i = ... ;

as usual, we also assume (ib). In the steady case, (39) reduces

to

-'Soe John's [31] bibliography on this subject.
46See [60].
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(40) L/V Ui(x) +2_pi.X1 . X gui('.)
xi 

= 1 . . i

The two-dimensional homogeneous equation (4) for the stream

function becomes

(41) C , 2 xt t) Ul(Xt)

•t g¢x1

and in the steady state case,

(42) VV 4(x) = - u 1x

Oseen [57, 58, 59] treated the homogeneous equations (39) and

(40) in E2 and E3 but always in a domain of the form x >

corresponding to a flow extending to infinity on one side of a

fixed streamline. His method is that of integral equations. Fa'ycn

[20], also by integral oquations, derived

Theorem 11: Problems P(Q3 ) and P(-3 - Q3 ) both have one

and only one solution when Q is of class B - h and when

u = ai on S, for continuous cl, and when

A. For P(), a 77d

B. For P(E3 - , -- > C' as l/r.

The same result applies in E 2. In both the two-and three-

dimensional cases the solutions are of class Co in the interior.

G. Fokier-Pianck Equaiiun

The Oseen equation is similar in form to the Fokker-Planck

equaticn

P3 L I t a (-- ax +> bijx't) 9-Ux + c(xtu+i(xt)

with the matrix l aijil positive definite. Thus (41) is seen as
2•

aipecial case of (43), if t = ?: is taken as the dependent

variable. Equation (43) applies to diffusion with variable, non-
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isotropic diffusivity.

For the Fokker-Planck equation, Feller [21] defined a funda-

mental solution u(x, t; •,7 ) for the homor, oneous equation

(12') ut(x,t) = a(x,t)uxx + b(x,t)ux(x,t) + c(x,t)u,

as follows:

1. As a function of x, t; u(x,t; •, 'K) satisfies (12')

2. As a function of c, L- ; u(x,t; P, • ) satisfies the

adjoint equation ut (x,t) = (a(x,t)ux) - (bu)x + cu
¢b (f(x) a < x -< b

3 u(xtia,77) f(4 d =b

a x < a or b < x

for f(x) continuous. (If the range of x is not finite, some

additional condition on f(x) is needed. A sufficient condition

is that f(x) is bounded.)

4. The above properties hold throughout the infinite range

<to < X < t -

at-id
to

j u(x,t,s, )u(s,t;a, U )ds = u(x,t; •, ,)

Under the assumptions

A'. For to S t <- t 1 and all x; a, at, ax, axx, b, bx, c

are T-Lipschitz continuous in x and t.

B'. a,1/a,I ,e, c are bounded where N = b - aX/2 + yri 0 t

and whore O(x,t) =ý a(y,t)y/2 dy,
'0

he proved in [21] the existence of a fundamental solution for (121).

Dressel [15, 16] gener'.lized this result to equation (43). Rec-

ently Weber [T72] extended it to tl'e equatinn
n

. (x - + aU +
iJ ij il f" Yt• x t
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Fundamental solutions are used to prove the existence of soi-

utions of initial value problems. Using the concept of a funda-

mental solution, Feller [21] showed that Pt(E ) for equation (12)

has a unique bounded solution U that approaches a continuous

0(x) for t -- > o, when f(x, t) has continuous bounded first

derivatives, and the coefficients satisfy assumptions A', B' above*

When the coefficients satisfy T-Lipschitz conditions, problem

Pt(Qn) for equation (43) has one and only one solution for contin-

uous initial and boundary values as shown in Barrar [3].

In order to treat singular 7okker-Planck equations, for ex-

ample, when a(rl) = 0 in

(44) ut(t,x) = a(x)uxx (t,x) + b(x)ux(t, X)

and its adjoint

(45) vO(tNx) -"•7 [-Ix (a(x) v(t,x)) - b'x) v(t, x)]

in the interval [ri, r 2 ], Feller [22] used an approach which

oepends on the Hille-Yosida theorem for generators of semi-groupb .

1:7:
'7Rocently John [31, P. 165] extended this theorem to apply when

0(x) is bounded and liemann integrable.

48 Hille-Yosida theorem: Let S be a contraction semi-group with range
dense in the Banach space X in which positive elements are defined.
[i.e., S is a set of transformations T (with t > 0) such that to
each x c X and each t > C, there correshonds an element Ttx M X
such that Tt+sx = T (T x), Furthermore,

a, IITt+h X TtxiI -- > 0 as h -- > 0

b, JIT tX1 110x~
c, x t 0 implies Ttx- C!

The infinitesimal generator A is an additive operator whose domain
is dense in X and such that to each x e X and oacb N > 0 thao
exists a unique y. belonging to domain of A with

A. NyX - AIX = x

B. I HQ1~ A 11x11
C. Y -tO whenever x 0 0

Conversely, an additive operator with these properties is the in-
finitesimal generator of a contraction semi-group with range dense
in X. The inverse y (X! - A)" is called the resolvent of S.
For a proof, see [761a
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"-c ssumod a' (x), b(x) are continuous, but not necessarily

bounded, in the open interval (r.r 2 ) and a 0 0. To express his

results, he defined

W(x) = xp V- b(s) a- (s) es.],
X0

where x E (rlr 2 ) is fixed.. Ve used the regularity condition that

the boundary rj is called regular if w(x) belongs to the space

of integrable functions on (Xo,rj X(x 0orj), and a -(x)w- (x)

belongs to Z(Xo.Vr ). Thus, for example, for the equation ut =

Uxx, r 3 is regular if and only if rj is finite. With this nota-

tien, he derived

Theorem 12: Under the above conditions, when none of the

boundaries is regular, there exists one and only one fundamental

solution common to (44) and (45). VMhen one or both boundaries ar:-

regular, then a necessary and sufficient condition that (44) and

(45) have a common fundamental solution is that there exist conr

stants p j, q such that

(46) qj limr u(t,x) + p (-I)j limr w-I(X)Ux(t,x) = 0
x-->r i x--•rj

(47) qj lir w(x)a(x)v(t,x) + pi(-1)J lim ([a(x)v(tx)]~Xx--wrjx-->,ri

b(x) v(tx)) =0,

respectively at the regular boundaries.

Feller ulecd (46) and (47-jr) the "genoralized .. ... ssical boundary

conditions." I•is method of proof works only when the co.,fficients

in (44) and (45) do not depjnd on the time.

Gevriy [21J o ba i existence thor••ms for Pt (Qia for the

parabolic system of equations

2 b Uk + +f
Sk+ b k h(18)i aj b 1,, +.~+~ _ c YU f hk=lI nj

-I\1 ~ 2 x t hi hi x ± . YI*



when a is positive defirnite, b < 0 and when 0 is of clasp

B - h and the coefficients are 'y--Lipschitz continuous, Jowuv.,,r,

it does not seem possible to apply these results to Os.)en's

equation.

At this point it is interesting to note the following

Theorem 13: Lot kij) for k = 1 ... n of (48) be a sym-

metric positive definite form in Qn for 0 - t S T. Let b1 < 0.Let bk k ~ o

Le ,1 b ak, ch , of (48) all bo y-Lipschitz continuous in

n < .<Q for C - t - T. Let Q be of class B a h. Then there exists

one and only one regular solution to problem P t(Qn) for 0 - t

< 49if
- T, for preassigned values of U and only if the homogeneous

500
problem50 has only the trivial solution U, 0 0, k = 1 ,

Proof.P The theorem will be proved, without loss of gen.e.rality

for Uk(xt) = 0 for x E S and t = C. Let H be the Banach

space of vectors 1'- (n *'' *•) such that each /i is e-Lip-
- q; 52

schitz continuous, with l11" = 52 'i1  • For any given

E H, let U(1) - (U 1 ... Un) be the vector such that

2 k E: S
k. a - = 0 .U' U(x,t) = C C

ij i LJXa x 2 t(X
[k 1 ... ni

Tben let

I k OUh k
L(U- -)k b hi•- +/ Ch Uh

and 1

F = (fl age fn).

i.., (x); Uk(ic,t) U t) for x E S, with

Uk(x) and Ul(xt) given cuntinuous functions thatagree wh-n

t =O
5 0 i e., U(X) = Ul(x,t) = 0 in foot,.ote 49 above, and fk

k 1k.k = ... n,
5 1 The proof is in the spirit of Schauder [65, Chap. 41.
521I. 1i1[n = max [IV + C, where C = g.l.b, of all C's such that

y C lxl-x2 I i t1 2
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Using this notation. equation (-8) may be written

-4 --1;~.
S+ L(U- = F, v, F P

From results in [31, it follows that L(U,'Q)) is a completely

continuous linear operator taking H into H. Thus by the

Hildebrandt-Riesz theorem53 , equation (48) has a solution if and

only if the homogeneous equation has only the trivial solution54.

H. Sto'Kes's Equatiocn-; (Case R 1 0)

Equation (1) may be plausibly simplified at low Reynolds

number R <K 1 by assuming that all velocities are very small,

and thus completely neglecting the term uk Zut/axk quadratic

in the velocities. The resulting Stokes equation5 5

? ui(x,t) 2
(49a) ? =)/ui(x,t) +- (x,t) + g(xt [i "1I

2 t •xi

(49b) 0ui'x't) = -

a x

or, in the steady state,

(50a) ji\72 ui(x) + _p/Ž9 xi = fyi(x,t) [i = 1 ... n]

(5Ob) 9ui(x)/,i')xi = 0

is mathematically a special case of the Oseen equation,

The two-dimensional homogeneous e4uation for the stream

function becomes

(51) (x = t VV 4t (x,t)

In the steady state, it bucumes the. biharmonic equation

(52) 4

5 3 For a statement and proof, nee [2, p. 150].
54No known uniqueness theorem is applicable to equation (113). The

one in [214] uses integral equations,
5 5s~e [-8]



For the Stokes equations, Odqvist [541 derived a rosult sim.-

ilar to Theorem 11 for P(Q), P(E 3 - 03), P(Q2 ) and P(E2 _ 02)

under the somewhat weaker restriction that Q is of class Ah.

His results also cover the inhomogeneous equation when gi is

bounded and y-Lipschitz continuous, Cdqvist was able to char-

acterize the behavior of the solutions of the Stokes equation more

precisely than Faxen could characterize the behavior of the sol-

utions of the Oseen equation. For example, Odqvist proved that if

Q is of class Bh, and the boundary values are of class C ,

then the solution is of class C in Q,

Leray [37, 38] discussed Pt(E 2) and Pt(E3 ). For example,

in [39] he derived

Theorem 141 Let ui(x) be continuous and belong to L2(E 3 ).

Let there exist a continuous function f(t) for t e [C, t] such

thiat

.i•' gi(x,t)gi(xt)dv - f(t)
E

Let cgx(xt)/4x; exist. Then Pt(E3 ) for Stokes equation (49)

has one and only one solution ui(x,t) with u,(x,O) = a,(x), and

such that there exists a continuous function g(t) defined for

t E [0, T] such that
Y. ui(x,t~ui(x, t) g<t

He deriv0d a similar result in [38] for Pt(Q2) with Q

convex and of class B - h, and with uI = . on S. Ia [4C1 he

gave a mathod (without details) to transfer Pt(Q ) and
( Q 2) to Voltrra integral equations, and thus gave a way

to obtain oxistence theorems.

For Pt(Q) and Pt( -_ Odqvist [551, by a Laplace

tvansformiation, orthogonal series, and integral equations, ob-

uic< eorcfl nnin ti-onlYm 1r-", "h-in oV f c- 1 a _3 R
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h owovor, Odqvist, due to tecnical difficulties, 'had to assume

Dk(ui(X, 0)).: 0, k = 1, ... 4 for x c S.

Dolidze [11, 12, 13] was also concerned with Pt(3),

PtE 0 - 0), Pt(Q2) and Pt(E -_ ). The existence theorems

in [13] may possibly be more general than those in Leray [38] and

Odqvist [55]. However, J. Kravtchenko [Math. Rev. 9 (1940) 116-117]

has said that Dolidze's reasoning is very condensed and his hypo-

theses are not clear. Kneale [35] treated the axially symmetric

cas~e, deducing his existence theorems from known ones for the bi-

harmonic equation.

Uniqueness theorems for the St;okes equations are readily proved.

The proof for the steady state case is given in Lichtenstein [47,

P. 394]; the proof for the time dependent case , in Leray [39, P.

2515]5, 56.

For the biharmonic equation, Schrbder [66] obtained existence

42 p ,3N"? 2and uniqueness theorems for v = 0 for P(Q2), p(s), P(E'. Q),

and P(E 3 - Q3) when Q is of class Ah, with r4*/!7'x -- > i

on S. For the P(E3 -,Q) existence and uniqueness theorem, he•2
postulated that 1/a xi vanished as f/r. For the P(E Q2)

existence and uniqueness theorem, he postulated that _ 7/, xi was

bounded at infinity,. This is connected with the Stokes paradox,

which can be stated as follows.

5 5Sirte the Navier-Stokes equations are not linear, a more complicated
proof is needed for them. However, It is very similar to the proof
aboeve. See :[39, p. 221], Leray's proof also works for Oseenys
equation.

56 Although the proof on p. 2ý5 does not apply to the time dependent
Stokes aad Oses equations, it may be conjectured that it can be
modified to do so. Since uniqueness theorems are known for thq
Stokes and Oseen oquations, the proof would then yield an exist-
ence theorem. It would also yield stronger bounds on the behavior
of the solution than previously proved, bVecause with this proof it
i6 pc-sible to go directly from the Fokker-Planck to the Oseun and
Stokes ceuations. There is a similar relationship between, elliptic
equations and the steady state Stokes and Oseon equations.



29,

Although a solution of the Steady state homogeneous Stokes

equation (50) exists for the boundary conditions U = 0 on the

surface of a sphere and U -- > U at infinity, the corresponi'ng
W

solution for the two-dimensional problem of U = 0 on the surface

of an infinite circular cylinder does not exist 5 7 .

Odqvist [54] also obtained existence theorems for the two-

dimensional biharmonic equation, but his results are not as gen-

eral, nor does he describe the behavior at infinity as specifically

as Schr~der.

In Schrbder [67], properties of solutions of -7 = 0 are

studied very carefully, For example, he proves that if S is a

manifold of class Cn , and the boundary values are of class Cn,

then * is of class Cn in ý, Other properties for them can be

found in Nicolesco [53]. In [53, §8], for example, he gives the

proof that a biharmonic (in fact, a polyhermonic) function defined

in Q is analytic in the interior of Q.

From known results about Poissont s equation 72U = g; it

is possible to construct a particular solution of k•7•U = f.

Thus because of t$o linearity of the biharmonic equation, all ox-

istence theorems for the homogeneous equation also apply to the in-

homogeneous,

Similarly, just as particular solutions of Poisson's equation

in infinite space may be constructed with l/r, particular solu-

tions of Oseen t s and Stokcsa equations may be constructed with the

tensors given in [56], so that the results for the homogeneous

equation again apply to the inhomogeneous.

5 7S' [05, P. 33] and [35].

Let U 3 f 1 dV If all Dnf arc 'y-Lipschitz continuous, then
r 3 n ~2.Yý'.all Dn+ 2 • are y-Lipschitz continuous; furthermore, U 7 U

for f T-Lipschitz oqntinuous [3,§301. From those results, it
can it seen that ne U -r f where It f U•-) avt Ifi Z
the~n it Is ncooressnry to nossumo f 0,) Or a similn-rnnoit~inn-
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